В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Методы обнаружения ошибок

В обычном равномерном непомехоустойчивом коде число разрядов n в кодовых
комбинациях определяется числом сообщений и основанием кода.

Коды, у которых все кодовые комбинации разрешены, называются простыми или
равнодоступными и являются полностью безызбыточными. Безызбыточные коды обладают
большой «чувствительностью» к помехам. Внесение избыточности при использовании
помехоустойчивых кодов связано с увеличением n – числа разрядов кодовой комбинации. Таким
образом, все множество
комбинаций можно разбить на два подмножества:
подмножество разрешенных комбинаций, обладающих определенными признаками, и
подмножество запрещенных комбинаций, этими признаками не обладающих.

Помехоустойчивый код отличается от обычного кода тем, что в канал передаются не все
кодовые комбинации N, которые можно сформировать из имеющегося числа разрядов n, а только
их часть Nk , которая составляет подмножество разрешенных комбинаций. Если при приеме
выясняется, что кодовая комбинация принадлежит к запрещенным, то это свидетельствует о
наличии ошибок в комбинации, т. таким образом решается задача обнаружения ошибок. При
этом принятая комбинация не декодируется (не принимается решение о переданном
сообщении). В связи с этим помехоустойчивые коды называют корректирующими кодами. Корректирующие свойства избыточных кодов зависят от правила их построения, определяющего
структуру кода, и параметров кода (длительности символов, числа разрядов, избыточности и т.

Первые работы по корректирующим кодам принадлежат Хеммингу, который ввел понятие
минимального кодового расстояния dmin и предложил код, позволяющий однозначно указать ту
позицию в кодовой комбинации, где произошла ошибка. К информационным элементам k в коде
Хемминга добавляется m проверочных элементов для автоматического определения
местоположения ошибочного символа. Таким образом, общая длина кодовой комбинации
составляет: n = k + m.

Необходимая теория

Рассмотрим задачу передачи потока битовой информации по каналу с шумом с возможностью автоматического исправления ошибок, допущенных при передаче. При блоковом кодировании входящий поток информации разбивается на блоки фиксированной длины. Обозначим один такой блок через. Предполагается, что во входном потоке данных, вообще говоря, нет избыточности. Поэтому для реализации схемы, способной исправлять ошибки, необходимо закодировать блок в некоторое кодовое слово большей длины путем добавления избыточности в передаваемые данные. Обозначим кодовое слово через ,. Для кодирования всевозможных блоков необходимо использовать кодовых слов длины. Определим минимальное расстояние кода как минимальное хэммингово расстояние для всех различных пар кодовых слов. Назовём множество кодовых слов длины с минимальным расстоянием (n,k,d)-блоковым кодом, а величину — скоростью кода. При передаче по каналу с шумом кодовое слово превращается в принятое слово , которое, вообще говоря, отличается от. Далее алгоритм декодирования пытается восстановить переданное слово путем поиска среди всевозможных кодовых слов ближайшего к. Обозначим результат работы алгоритма декодирования через. На последнем этапе декодированное слово переводится в декодированное слово исходного сообщения. Очевидно, что (n,k,d)-блоковый код способен обнаруживать до ошибки и исправлять до ошибок.

Кодирование с помощью (n,k,d)-линейного циклического блокового кода

Множество с операциями суммы и произведения по модулю 2 образует линейное пространство над конечным полем. (n,k,d)-блоковый код называется линейным, если множество его кодовых слов образует линейное подпространство размерности общего линейного пространства. Таким образом, для линейного кода произвольная линейная комбинация кодовых слов является кодовым словом. Минимальное кодовое расстояние для линейного кода определяется как минимальный хэммингов вес (количество ненулевых бит) среди ненулевых кодовых слов. (n,k,d)-линейный блоковый код называется циклическим, если любой циклический сдвиг кодового слова является кодовым словом. Поставим в соответствие произвольному вектору полином вида. Тогда можно показать, что для (n,k,d)-линейного циклического блокового кода найдется полином степени такой, что

  • Все кодовые слова могут быть представлены как , где — некоторый полином степени, не превышающей ;
  • Полином является делителем полинома .

Такой полином называется порождающим полиномом циклического кода. Любой полином, являющийся делителем , является порождающим для некоторого циклического кода.

Кодирование называется систематическим, если все биты исходного сообщения копируются в некоторые биты кодового слова. При систематическом кодировании обратный процесс преобразования из декодированного кодового слова в декодированное слово сообщения становится тривиальным. Для циклического кода, задаваемого порождающим полиномом , процесс систематического кодирования может быть реализован как

Здесь через обозначена операция взятия остатка от деления многочлена на многочлен.

Полином называется минимальным полиномом для элемента , если он является неприводимым полиномом минимальной степени, для которого является корнем. В частности, минимальный полином для примитивного элемента называется примитивным полиномом. Можно показать, что корнями минимального полинома являются

Данный набор элементов из поля называется циклотомическим классом смежности для элемента. Количество элементов в смежном классе либо равно , либо является делителем. Циклотомические классы, порожденные различными элементами поля, либо совпадают, либо не пересекаются. Можно показать, что полином

имеет коэффициенты из и является минимальным полиномом для , а также для всех элементов поля, входящих вместе с в один циклотомический класс. Отсюда выводится метод построения минимального полинома для заданного элемента поля :

  • Построить циклотомический класс, порожденный элементом ;
  • Найти коэффициенты полинома путем перемножения многочленов для всех .

Пусть ,. Тогда кодом БЧХ называется (n,k)-линейный циклический код, в котором порождающий многочлен определяется как минимальный многочлен для элементов из поля , где — произвольный примитивный элемент поля. Набор элементов называется нулями БЧХ-кода. Можно показать, что минимальное кодовое расстояние кода БЧХ не меньше, чем величина. В результате БЧХ-коды по построению способны исправлять не менее ошибок.

Декодирование

Поставим в соответствие позициям принятого слова элементы. При передаче по шумовому каналу кодовое слово переходит в слово , где — полином ошибок, а — позиции, в которых произошли ошибки. Назовем синдромами принятого сообщения значения полинома в нулях БЧХ-кода, т. Если является кодовым словом, то все синдромы. Рассмотрим полином локаторов ошибок

Данный полином имеет корни. Можно показать, что коэффициенты полинома удовлетворяют следующей СЛАУ:

Отсюда получаем следующую общую схему декодирования БЧХ-кода:

  • Для принятого слова вычислить синдромы . Если все , то вернуть в качестве ответа;
  • Найти количество допущенных ошибок и коэффициенты полинома локаторов ошибок путем решения СЛАУ (*);
  • Найти все корни полинома путем полного перебора, по найденным корням вычислить номера позиций , в которых произошли ошибки;

Различные алгоритмы декодирования БЧХ-кодов по-разному решают задачу на шаге 2 общего алгоритма декодирования. Рассмотрим две схемы декодирования.

Декодер PGZ (Peterson–Gorenstein–Zierler)

Данный декодер предполагает непосредственное решение СЛАУ (*). Основная трудность здесь — это определить количество фактически допущенных при передаче ошибок. В декодере PGZ происходит перебор по всем значениям , начиная с. При текущем делается попытка решить СЛАУ (*). Если матрица СЛАУ является невырожденной, то текущее признается количеством допущенных ошибок, а коэффициенты полинома локаторов ошибок находятся из решения СЛАУ. Если матрица СЛАУ является вырожденной, то , величина уменьшается на единицу, и процесс повторяется. Если СЛАУ решить не удается ни на одной итерации, то выдается отказ от декодирования. Также отказ от декодирования выдаётся в случае, если после исправления синдромы не равны нулю (кодовое слово не найдено).

Декодер Euclid

Рассмотрим синдромный полином вида , где — вычисленные ранее синдромы. Тогда можно показать, что и удовлетворяют следующему уравнению:

Здесь — некоторый многочлен из , степень которого не превышает. Решение данного уравнения для заданных многочленов и может быть найдено с помощью расширенного алгоритма Евклида. Здесь итерации алгоритма Евклида проводятся до тех пор, пока степень текущего остатка не станет меньше или равна. Степень найденного равна количеству фактически допущенных при передаче ошибок. Если количество корней у не совпадает с , то выдаётся отказ от декодирования.

Формулировка задания

В задании выдается список всех примитивных многочленов степени над полем для всех.

  • Реализовать основные операции в поле : сложение, умножение, деление, решение СЛАУ, поиск минимального многочлена из для заданного набора корней из поля ;
  • Реализовать основные операции для работы с многочленами из : произведение многочленов, деление многочленов с остатком, расширенный алгоритм Евклида для пары многочленов, вычисление значения многочлена для набора элементов из ;
  • Реализовать процедуру систематического кодирования для циклического кода, заданного своим порождающим многочленом;
  • Реализовать процедуру построения порождающего многочлена для БЧХ-кода при заданных и ;
  • Построить графики зависимости скорости БЧХ-кода от количества исправляемых кодом ошибок для различных значений . Какие значения следует выбирать на практике для заданного ?
  • Реализовать процедуру вычисления истинного минимального расстояния циклического кода , заданного своим порождающим многочленом, путем полного перебора по всем кодовым словам. Привести пример БЧХ-кода, для которого истинное минимальное расстояние больше, чем величина ;
  • Реализовать процедуру декодирования БЧХ-кода с помощью метода PGZ и на основе расширенного алгоритма Евклида. Провести сравнение двух методов декодирования по времени работы;
  • Составить отчет в формате PDF обо всех проведенных исследованиях.

Оформление задания

Выполненное задание с отчетом и всеми исходными кодами необходимо прислать преподавателю. Большая просьба строго следовать указанным ниже прототипам реализуемых функций.

Построение матрицы соответствия между десятичным и степенным представлением для всех элементов поля

pm = gf_gen_pow_matrix(pp)

ВХОД

pp — примитивный многочлен над полем степени , десятичное число, двоичная запись которого соответствует коэффициентам полинома, первый разряд соответствует старшей степени полинома;

ВЫХОД

pm — матрица соответствия между десятичным представлением и степенным представлением по стандартному примитивному элементу , матрица размера , в которой в первой колонке в позиции стоит степень , а во второй колонке в позиции стоит значение.

Умножение/деление в поле

res = gf_prod(X, Y, pm) — поэлементное умножение двух матриц

res = gf_divide(X, Y, pm) — поэлементное деление двух матриц

ВХОД

X, Y — матрица из элементов поля ;

pm — матрица соответствия между десятичным и степенным представлением в поле ;

ВЫХОД

res — результат операции, при делении на ноль соответствующий элемент равен NaN.

Решение СЛАУ в поле методом Гаусса

x = gf_linsolve(A, b, pm)

ВХОД

A — квадратная матрица из элементов поля ;

b — вектор-столбец из элементов поля ;

pm — матрица соответствия между десятичным и степенным представлением в поле ;

ВЫХОД

x — решение СЛАУ, вектор-столбец из элементов поля, в случае вырожденности равен NaN.

Значение полинома из на наборе элементов из

res = gf_polyval(p, X, pm)

ВХОД

p — полином из , вектор-строка коэффициентов, начиная со старшей степени;

X — вектор-столбец из элементов поля ;

pm — матрица соответствия между десятичным и степенным представлением в поле ;

ВЫХОД

res — значение полинома для всех элементов X, вектор-столбец.

Умножение двух полиномов из

res = gf_polyprod(p1, p2, pm)

ВХОД

p1 — полином из , вектор-строка коэффициентов, начиная со старшей степени;

p2 — полином из , вектор-строка коэффициентов, начиная со старшей степени;

pm — матрица соответствия между десятичным и степенным представлением в поле ;

ВЫХОД

res — значение полинома p1(x)*p2(x), вектор-строка коэффициентов, начиная со старшей степени.

Вычисление минимального расстояния циклического кода путем полного перебора

d = cyclic_dist(g, n)

ВХОД

g — порождающий многочлен кода, бинарный вектор-строка;

n — длина кода;

ВЫХОД

d — минимальное расстояние кода, число.

Метричное представление n,k-кодов

В настоящее время наибольшее внимание с точки зрения технических приложений
уделяется двоичным блочным корректирующим кодам. При использовании блочных кодов
цифровая информация передается в виде отдельных кодовых комбинаций (блоков) равной
длины. Кодирование и декодирование каждого блока осуществляется независимо друг от друга.

Читайте также:  Код ошибки 0x800701b1 при установке windows 10 с флешки на ssd

Почти все блочные коды относятся к разделимым кодам, кодовые комбинации которых
состоят из двух частей: информационной и проверочной. При общем числе n символов в блоке
число информационных символов равно k, а число проверочных символов:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

К основным характеристикам корректирующих кодов относятся:

– число разрешенных и запрещенных кодовых комбинаций;
– избыточность кода;
– минимальное кодовое расстояние;
– число обнаруживаемых или исправляемых ошибок;
– корректирующие возможности кодов.

Для блочных двоичных кодов, с числом символов в блоках, равным n, общее число
возможных кодовых комбинаций определяется значением

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Число разрешенных кодовых комбинаций при наличии k информационных разрядов в
первичном коде:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Очевидно, что число запрещенных комбинаций:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

а с учетом отношение будет

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

где m – число избыточных (проверочных) разрядов в блочном коде.

Избыточностью корректирующего кода называют величину

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Эта величина показывает, какую часть общего числа символов кодовой комбинации
составляют информационные символы. В теории кодирования величину Bk называют
относительной скоростью кода. Если производительность источника информации равна H
символов в секунду, то скорость передачи после кодирования этой информации будет

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

поскольку в закодированной последовательности из каждых n символов только k символов
являются информационными.

Если число ошибок, которые нужно обнаружить или исправить, значительно, то необходимо
иметь код с большим числом проверочных символов. Чтобы при этом скорость передачи
оставалась достаточно высокой, необходимо в каждом кодовом блоке одновременно
увеличивать как общее число символов, так и число информационных символов.

При этом длительность кодовых блоков будет существенно возрастать, что приведет к
задержке информации при передаче и приеме. Чем сложнее кодирование, тем длительнее
временная задержка информации.

Минимальное кодовое расстояние – dmin. Для того чтобы можно было обнаружить и
исправлять ошибки, разрешенная комбинация должна как можно больше отличаться от
запрещенной. Если ошибки в канале связи действуют независимо, то вероятность преобразования
одной кодовой комбинации в другую будет тем меньше, чем большим числом символов они
различаются.

Если интерпретировать кодовые комбинации как точки в пространстве, то отличие
выражается в близости этих точек, т. в расстоянии между ними.

Количество разрядов (символов), которыми отличаются две кодовые комбинации, можно
принять за кодовое расстояние между ними. Для определения этого расстояния нужно сложить
две кодовые комбинации «по модулю 2» и подсчитать число единиц в полученной сумме. Например, две кодовые комбинации xi = 01011 и xj = 10010 имеют расстояние d(xi,xj) , равное 3,
так как:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Здесь под операцией ⊕ понимается сложение «по модулю 2».

Заметим, что кодовое расстояние d(xi,x0) между комбинацией xi и нулевой x0 = 00. 0
называют весом W комбинации xi, т. вес xi равен числу «1» в ней.

Расстояние между различными комбинациями некоторого конкретного кода могут
существенно отличаться. Так, в частности, в безызбыточном первичном натуральном коде n = k это
расстояние для различных комбинаций может изменяться от единицы до величины n, равной
разрядности кода. Особую важность для характеристики корректирующих свойств кода имеет
минимальное кодовое расстояние dmin, определяемое при попарном сравнении всех кодовых
комбинаций, которое называют расстоянием Хемминга.

В безызбыточном коде все комбинации являются разрешенными и его минимальное
кодовое расстояние равно единице – dmin=1. Поэтому достаточно исказиться одному символу,
чтобы вместо переданной комбинации была принята другая разрешенная комбинация. Чтобы код
обладал корректирующими свойствами, необходимо ввести в него некоторую избыточность,
которая обеспечивала бы минимальное расстояние между любыми двумя разрешенными
комбинациями не менее двух – dmin ≥ 2.

Минимальное кодовое расстояние является важнейшей характеристикой помехоустойчивых
кодов, указывающей на гарантируемое число обнаруживаемых или исправляемых заданным
кодом ошибок.

Минимальное кодовое расстояние является основным параметром, характеризующим
корректирующие способности данного кода. Если код используется только для обнаружения
ошибок кратностью g0, то необходимо и достаточно, чтобы минимальное кодовое расстояние
было равно dmin ≥ g0 + 1.

В этом случае никакая комбинация из go ошибок не может перевести одну разрешенную
кодовую комбинацию в другую разрешенную. Таким образом, условие обнаружения всех ошибок
кратностью g0 можно записать

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Чтобы можно было исправить все ошибки кратностью gu и менее, необходимо иметь
минимальное расстояние, удовлетворяющее условию dmin ≥ 2gu

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

В этом случае любая кодовая комбинация с числом ошибок gu отличается от каждой
разрешенной комбинации не менее чем в gu+1 позициях. Если условие не выполнено,
возможен случай, когда ошибки кратности g исказят переданную комбинацию так, что она станет
ближе к одной из разрешенных комбинаций, чем к переданной или даже перейдет в другую
разрешенную комбинацию. В соответствии с этим, условие исправления всех ошибок кратностью
не более gи можно записать:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Из и
следует, что если код исправляет все ошибки кратностью gu, то число
ошибок, которые он может обнаружить, равно go = 2gu. Следует отметить, что эти соотношения
устанавливают лишь гарантированное минимальное число обнаруживаемых или
исправляемых ошибок при заданном dmin и не ограничивают возможность обнаружения ошибок
большей кратности. Например, простейший код с проверкой на четность с dmin = 2 позволяет
обнаруживать не только одиночные ошибки, но и любое нечетное число ошибок в пределах go < n.

Вопрос о минимально необходимой избыточности, при которой код обладает нужными
корректирующими свойствами, является одним из важнейших в теории кодирования. Этот вопрос
до сих пор не получил полного решения. В настоящее время получен лишь ряд верхних и нижних
оценок (границ), которые устанавливают связь между максимально возможным минимальным
расстоянием корректирующего кода и его избыточностью.

Коды Хэмминга

Построение кодов Хемминга базируется на принципе проверки на четность веса W (числа
единичных символов «1») в информационной группе кодового блока.

Поясним идею проверки на четность на примере простейшего корректирующего кода,
который так и называется кодом с проверкой на четность или кодом с проверкой по паритету
(равенству).

В таком коде к кодовым комбинациям безызбыточного первичного двоичного k-разрядного
кода добавляется один дополнительный разряд (символ проверки на четность, называемый
проверочным, или контрольным). Если число символов «1» исходной кодовой комбинации
четное, то в дополнительном разряде формируют контрольный символ «0», а если число
символов «1» нечетное, то в дополнительном разряде формируют символ «1». В результате
общее число символов «1» в любой передаваемой кодовой комбинации всегда будет четным.

Таким образом, правило формирования проверочного символа сводится к следующему:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

где i – соответствующий информационный символ («0» или «1»); k – общее их число а, под
операцией ⊕ здесь и далее понимается сложение «по модулю 2». Очевидно, что добавление
дополнительного разряда увеличивает общее число возможных комбинаций вдвое по сравнению
с числом комбинаций исходного первичного кода, а условие четности разделяет все комбинации
на разрешенные и неразрешенные. Код с проверкой на четность позволяет обнаруживать
одиночную ошибку при приеме кодовой комбинации, так как такая ошибка нарушает условие
четности, переводя разрешенную комбинацию в запрещенную.

Критерием правильности принятой комбинации является равенство нулю результата S
суммирования «по модулю 2» всех n символов кода, включая проверочный символ m1. При
наличии одиночной ошибки S принимает значение 1:

– ошибок нет,

– однократная ошибка

Этот код является (k+1,k)-кодом, или (n,n–1)-кодом. Минимальное расстояние кода равно
двум (dmin = 2), и, следовательно, никакие ошибки не могут быть исправлены. Простой код с
проверкой на четность может использоваться только для обнаружения (но не исправления)
однократных ошибок.

Увеличивая число дополнительных проверочных разрядов, и формируя по определенным
правилам проверочные символы m, равные «0» или «1», можно усилить корректирующие
свойства кода так, чтобы он позволял не только обнаруживать, но и исправлять ошибки. На этом и
основано построение кодов Хемминга.

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

При других значениях числа информационных символов k получаются так называемые
усеченные (укороченные) коды Хемминга. Так для кода имеющего 5 информационных символов,
потребуется использование корректирующего кода (9,5), являющегося усеченным от
классического кода Хемминга (15,11), так как число символов в этом коде уменьшается
(укорачивается) на 6.

Для примера рассмотрим классический код Хемминга (7,4), который можно сформировать и
описать с помощью кодера, представленного на рис. 1 В простейшем варианте при заданных
четырех информационных символах: i1, i2, i3, i4 (k = 4), будем полагать, что они сгруппированы в
начале кодового слова, хотя это и не обязательно. Дополним эти информационные символы
тремя проверочными символами (m = 3), задавая их следующими равенствами проверки на
четность, которые определяются соответствующими алгоритмами, где знак ⊕ означает
сложение «по модулю 2»: r1 = i1 ⊕ i2 ⊕ i3, r2 = i2 ⊕ i3 ⊕ i4, r3 = i1 ⊕ i2 ⊕ i4.

В соответствии с этим алгоритмом определения значений проверочных символов mi, в табл. 1 выписаны все возможные 16 кодовых слов (7,4)-кода Хемминга.

Таблица 1 Кодовые слова (7,4)-кода Хэмминга

k=4
m=4

i1 i2 i3 i4
r1 r2 r3

0 0 0 0
0 0 0

0 0 0 1
0 1 1

0 0 1 0
1 1 0

0 0 1 1
1 0 1

0 1 0 0
1 1 1

0 1 0 1
1 0 0

0 1 1 0
0 0 1

0 1 1 1
0 1 0

1 0 0 0
1 0 1

1 0 0 1
1 0 0

1 0 1 0
0 1 1

1 0 1 1
0 0 0

1 1 0 0
0 1 0

1 1 0 1
0 0 1

1 1 1 0
1 0 0

1 1 1 1
1 1 1

На рис. 1 приведена блок-схема кодера – устройства автоматически кодирующего
информационные разряды в кодовые комбинации в соответствии с табл

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Рис. 1 Кодер для (7,4)-кода Хемминга

На рис. 4 приведена схема декодера для (7,4) – кода Хемминга, на вход которого
поступает кодовое слово. Апостроф означает, что любой символ слова может
быть искажен помехой в телекоммуникационном канале.

В декодере в режиме исправления ошибок строится последовательность:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Трехсимвольная последовательность (s1, s2, s3) называется синдромом. Термин «синдром»
используется и в медицине, где он обозначает сочетание признаков, характерных для
определенного заболевания. В данном случае синдром S = (s1, s2, s3) представляет собой
сочетание результатов проверки на четность соответствующих символов кодовой группы и
характеризует определенную конфигурацию ошибок (шумовой вектор).

Число возможных синдромов определяется выражением:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

При числе проверочных символов m =3 имеется восемь возможных синдромов (23 = 8). Нулевой синдром (000) указывает на то, что ошибки при приеме отсутствуют или не обнаружены. Всякому ненулевому синдрому соответствует определенная конфигурация ошибок, которая и
исправляется. Классические коды Хемминга имеют число синдромов, точно равное их
необходимому числу (что позволяет исправить все однократные ошибки в любом информативном
и проверочном символах) и включают один нулевой синдром. Такие коды называются
плотноупакованными.

Усеченные коды являются неплотноупакованными, так как число синдромов у них
превышает необходимое. Так, в коде (9,5) при четырех проверочных символах число синдромов
будет равно 24 =16, в то время как необходимо всего 10. Лишние 6 синдромов свидетельствуют о
неполной упаковке кода (9,5).

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Рис. 2 Декодер для (7, 4)-кода Хемминга

Для рассматриваемого кода (7,4) в табл. 2 представлены ненулевые синдромы и
соответствующие конфигурации ошибок.

Таблица 2 Синдромы (7, 4)-кода Хемминга

Синдром

001

010

011

100

101

110

111

Конфигурация ошибок

0000001

0000010

0000100

0001000

0010000

0100000

1000000

Ошибка в символе

m1

m2

i4

m1

i1

i3

i2

Таким образом, (7,4)-код позволяет исправить все одиночные ошибки. Простая проверка
показывает, что каждая из ошибок имеет свой единственный синдром. При этом возможно
создание такого цифрового корректора ошибок (дешифратора синдрома), который по
соответствующему синдрому исправляет соответствующий символ в принятой кодовой группе. После внесения исправления проверочные символы ri можно на выход декодера (рис. 2) не
выводить. Две или более ошибок превышают возможности корректирующего кода Хемминга, и
декодер будет ошибаться. Это означает, что он будет вносить неправильные исправления и
выдавать искаженные информационные символы.

Читайте также:  Билайн. У кого щас не робит?

Идея построения подобного корректирующего кода, естественно, не меняется при
перестановке позиций символов в кодовых словах. Все такие варианты также называются (7,4)-
кодами Хемминга.

Циклические коды

Своим названием эти коды обязаны такому факту, что для них часть комбинаций, либо все
комбинации могут быть получены путем циклическою сдвига одной или нескольких базовых
комбинаций кода.

Построение такого кода основывается на использовании неприводимых многочленов в поле
двоичных чисел. Такие многочлены не могут быть представлены в виде произведения
многочленов низших степеней подобно тому, как простые числа не могут быть представлены
произведением других чисел. Они делятся без остатка только на себя или на единицу.

Для определения неприводимых многочленов раскладывают на простые множители бином
хn -1. Так, для n = 7 это разложение имеет вид:

Каждый из полученных множителей разложения может применяться для построения
корректирующего кода.

Неприводимый полином g(x) называют задающим, образующим или порождающим
для корректирующего кода. Длина n (число разрядов) создаваемого кода произвольна. Кодовая последовательность (комбинация) корректирующего кода состоит из к информационных
разрядов и n – к контрольных (проверочных) разрядов. Степень порождающего полинома
r = n – к равна количеству неинформационных контрольных разрядов.

Если из сделанного выше разложения (при n = 7) взять полипом (х – 1), для которого
r=1, то k=n-r=7-1=6. Соответствующий этому полиному код используется для контроля
на чет/нечет (обнаружение ошибок). Для него минимальное кодовое расстояние D0 = 2
(одна единица от D0 – для исходного двоичного кода, вторая единица – за счет контрольного разряда).

Если же взять полином (x3+x2+1) из указанного разложения, то степень полинома
r=3, а k=n-r=7-3=4.

Контрольным разрядам в комбинации для некоторого кода могут быть четко определено место (номера разрядов). Тогда код называют систематическим или разделимым. В противном случае код является неразделимым.

Способы построения циклических кодов по заданному полиному.

1) На основе порождающей (задающей) матрицы G, которая имеет n столбцов, k строк, то есть параметры которой
связаны с параметрами комбинаций кода. Порождающую матрицу строят, взяв в качестве ее строк порождающий
полином g(x) и (k – 1) его циклических сдвигов:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Пример; Определить порождающую матрицу, если известно, что n=7, k=4, задающий полином g(x)=x3+х+1.

Решение: Кодовая комбинация, соответствующая задающему полиному g(x)=x3+х+1, имеет вид 1011. Тогда порождающая матрица G7,4 для кода при n=7, к=4 с учетом того, что k-1=3, имеет вид:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Порождающая матрица содержит k разрешенных кодовых комбинаций. Остальные комбинации кода,
количество которых (2k – k) можно определить суммированием по модулю 2 всевозможных сочетаний
строк матрицы Gn,k. Для матрицы, полученной в приведенном выше примере, суммирование по модулю 2
четырех строк 1-2, 1-3, 1-4, 2-3, 2-4, 3-4 дает следующие кодовые комбинации циклического кода:

Другие комбинации искомого корректирующего кода могут быть получены сложением трех комбинаций, например,
из сочетания строк 1-3-4, что дает комбинацию 1111111, а также сложением четырех строк 1-2-3-4, что
дает комбинацию 1101001 и т.

Ряд комбинаций искомого кода может быть получено путем дальнейшего циклического сдвига комбинаций
порождающей матрицы, например, 0110001, 1100010, 1000101. Всего для образования искомого циклического
кода требуется 2k=24=16 комбинаций.

2) Умножение исходных двоичных кодовых комбинаций на задающий полином.

Исходными комбинациями являются все k-разрядные двоичные комбинации. Так, например, для исходной
комбинации 1111 (при k = 4) умножение ее на задающий полином g(x)=x3+х+1=1011 дает 1101001. Полученные на основе двух рассмотренных способов циклические коды не являются разделимыми.

3) Деление на задающий полином.

Для получения разделимого (систематического) циклического кода необходимо разделить многочлен
xn-k*h(x), где h(x) – исходная двоичная комбинация, на задающий полином g(x) и прибавить полученный
остаток от деления к многочлену xn-k*h(x).

Заметим, что умножение исходной комбинации h(x) на xn-k эквивалентно сдвигу h(x) на (n-к) разрядов влево.

Пример: Требуется определить комбинации циклического разделимого кода, заданного полиномом g(x)=x3+х+1=1011 и
имеющего общее число разрядов 7, число информационных разрядов 4, число контрольных разрядов (n-k)=3.

Решение: Пусть исходная комбинация h(x)=1100. Умножение ее на xn-k=x3=1000 дает
x3*(x3+x2)=1100000, то есть эквивалентно
сдвигу исходной комбинации на 3 разряда влево. Деление комбинации 1100000 на комбинацию 1011, эквивалентно задающему полиному, дает:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Полученный остаток от деления, содержащий xn-k=3 разряда, прибавляем к полиному, в результате чего получаем искомую комбинацию
разделимого циклического кода: 1100010. В ней 4 старших разряда (слева) соответствуют исходной двоичной комбинации, а три младших
разряда являются контрольными.

Следует сделать ряд указаний относительно процедуры деления:

1) При делении задающий полином совмещается старшим разрядом со старшим «единичными разрядом делимого.

2) Вместо вычитания по модулю 2 выполняется эквивалентная ему процедура сложения по модулю 2.

3) Деление продолжается до тех пор, пока степень очередного остатка не будет меньше степени делителя (задающего полинома). При достижении
этого полученный остаток соответствует искомому содержанию контрольных разрядов для данной искомой двоичной комбинации.

Для проверки правильности выполнения процедуры определения комбинации циклического кода необходимо разделить полученную комб1шацию на задающий полином с
учетом сделанных выше замечаний. Получение нулевого остатка от такого деления свидетельствует о правильности определения комбинации.

Логический код 4В/5В

Логический код 4В/5В заменяет исходные символы длиной в 4 бита на символы длиной в 5 бит. Так как результирующие символы содержат избыточные биты, то
общее количество битовых комбинаций в них больше, чем в исходных. Таким образом, пяти-битовая схема дает 32 (25) двухразрядных буквенно-цифровых символа,
имеющих значение в десятичном коде от 00 до 31. В то время как исходные данные могут содержать только четыре бита или 16 (24) символов.

Поэтому в результирующем коде можно подобрать 16 таких комбинаций, которые не содержат большого количества нулей, а остальные считать запрещенными кодами
(code violation). В этом случае длинные последовательности нулей прерываются, и код становится самосинхронизирующимся для любых передаваемых данных. Исчезает также постоянная составляющая, а значит, еще более сужается спектр сигнала. Но этот метод снижает полезную пропускную способность линии,
так как избыточные единицы пользовательской информации не несут, и только “занимают эфирное время”. Избыточные коды позволяют приемнику распознавать
искаженные биты. Если приемник принимает запрещенный код, значит, на линии произошло искажение сигнала.

Итак, рассмотрим работу логического кода 4В/5В. Преобразованный сигнал имеет 16 значений для передачи информации и 16 избыточных значений. В декодере
приемника пять битов расшифровываются как информационные и служебные сигналы.

Для служебных сигналов отведены девять символов, семь символов – исключены.

Исключены комбинации, имеющие более трех нулей (01 – 00001, 02 – 00010, 03 – 00011, 08 – 01000, 16 – 10000). Такие сигналы интерпретируются символом
V и командой приемника VIOLATION – сбой. Команда означает наличие ошибки из-за высокого уровня помех или сбоя передатчика. Единственная
комбинация из пяти нулей (00 – 00000) относится к служебным сигналам, означает символ Q и имеет статус QUIET – отсутствие сигнала в линии.

Такое кодирование данных решает две задачи – синхронизации и улучшения помехоустойчивости. Синхронизация происходит за счет исключения
последовательности более трех нулей, а высокая помехоустойчивость достигается приемником данных на пяти-битовом интервале.

Цена за эти достоинства при таком способе кодирования данных – снижение скорости передачи полезной информации. К примеру, В результате добавления одного избыточного бита на четыре информационных, эффективность использования полосы
частот в протоколах с кодом MLT-3 и кодированием данных 4B/5B уменьшается соответственно на 25%.

Схема кодирования 4В/5В представлена в таблице.

Двоичный код 4В
Результирующий код 5В

0 0 0 0
1 1 1 1 0

0 0 0 1
0 1 0 0 1

0 0 1 0
1 0 1 0 0

0 0 1 1
1 0 1 0 1

0 1 0 0
0 1 0 1 0

0 1 0 1
0 1 0 1 1

0 1 1 0
0 1 1 1 0

0 1 1 1
0 1 1 1 1

1 0 0 0
1 0 0 1 0

1 0 0 1
1 0 0 1 1

1 0 1 0
1 0 1 1 0

1 0 1 1
1 0 1 1 1

1 1 0 0
1 1 0 1 0

1 1 0 1
1 1 0 1 1

1 1 1 0
1 1 1 0 0

1 1 1 1
1 1 1 0 1

Итак, соответственно этой таблице формируется код 4В/5В, затем передается по линии с помощью физического кодирования по
одному из методов потенциального кодирования, чувствительному только к длинным последовательностям нулей – например, в помощью
цифрового кода NRZI.

Символы кода 4В/5В длиной 5 бит гарантируют, что при любом их сочетании на линии не могут встретиться более трех нулей подряд.

Буква ^ В в названии кода означает, что элементарный сигнал имеет 2 состояния – от английского binary – двоичный. Имеются
также коды и с тремя состояниями сигнала, например, в коде 8В/6Т для кодирования 8 бит исходной информации используется
код из 6 сигналов, каждый из которых имеет три состояния. Избыточность кода 8В/6Т выше, чем кода 4В/5В, так как на 256
исходных кодов приходится 36=729 результирующих символов.

Как мы говорили, логическое кодирование происходит до физического, следовательно, его осуществляют оборудование канального
уровня сети: сетевые адаптеры и интерфейсные блоки коммутаторов и маршрутизаторов. Поскольку, как вы сами убедились,
использование таблицы перекодировки является очень простой операцией, поэтому метод логического кодирования избыточными
кодами не усложняет функциональные требования к этому оборудованию.

Единственное требование – для обеспечения заданной пропускной способности линии передатчик, использующий избыточный код,
должен работать с повышенной тактовой частотой. Так, для передачи кодов 4В/5В со скоростью 100 Мб/с передатчик должен
работать с тактовой частотой 125 МГц. При этом спектр сигнала на линии расширяется по сравнению со случаем, когда по
линии передается чистый, не избыточный код. Тем не менее, спектр избыточного потенциального кода оказывается уже
спектра манчестерского кода, что оправдывает дополнительный этап логического кодирования, а также работу приемника
и передатчика на повышенной тактовой частоте.

В основном для локальных сетей проще, надежней, качественней, быстрей – использовать логическое кодирование данных
с помощью избыточных кодов, которое устранит длительные последовательности нулей и обеспечит синхронизацию
сигнала, потом на физическом уровне использовать для передачи быстрый цифровой код NRZI, нежели без предварительного
логического кодирования использовать для передачи данных медленный, но самосинхронизирующийся манчестерский код.

Например, для передачи данных по линии с пропускной способностью 100М бит/с и полосой пропускания 100 МГц,
кодом NRZI необходимы частоты 25 – 50 МГц, это без кодирования 4В/5В. А если применить для NRZI еще и
кодирование 4В/5В, то теперь полоса частот расширится от 31,25 до 62,5 МГц. Но тем не менее, этот диапазон
еще “влазит” в полосу пропускания линии. А для манчестерского кода без применения всякого дополнительного
кодирования необходимы частоты от 50 до 100 МГц, и это частоты основного сигнала, но они уже не будут пропускаться
линией на 100 МГц.

Скрэмблирование

Другой метод логического кодирования основан на предварительном “перемешивании” исходной информации таким
образом, чтобы вероятность появления единиц и нулей на линии становилась близкой.

Устройства, или блоки, выполняющие такую операцию, называются скрэмблерами (scramble – свалка, беспорядочная сборка).

При скремблировании данные перемешиваються по определенному алгоритму и приемник, получив двоичные данные, передает
их на дескрэмблер, который восстанавливает исходную последовательность бит.

Избыточные биты при этом по линии не передаются.

Суть скремблирования заключается просто в побитном изменении проходящего через систему потока данных. Практически
единственной операцией, используемой в скремблерах является XOR – “побитное исключающее ИЛИ”, или еще говорят –
сложение по модулю 2. При сложении двух единиц исключающим ИЛИ отбрасывается старшая единица и результат записывается – 0.

Читайте также:  Код ошибки р1514 калина

Метод скрэмблирования очень прост. Сначала придумывают скрэмблер. Другими словами придумывают по какому соотношению
перемешивать биты в исходной последовательности с помощью “исключающего ИЛИ”. Затем согласно этому соотношению из текущей
последовательности бит выбираются значения определенных разрядов и складываются по XOR между собой. При этом все разряды
сдвигаются на 1 бит, а только что полученное значение (“0” или “1”) помещается в освободившийся самый младший разряд. Значение, находившееся в самом старшем разряде до сдвига, добавляется в кодирующую последовательность, становясь очередным
ее битом. Затем эта последовательность выдается в линию, где с помощью методов физического кодирования передается к
узлу-получателю, на входе которого эта последовательность дескрэмблируется на основе обратного отношения.

Например, скрэмблер может реализовывать следующее соотношение:

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

где Bi – двоичная цифра результирующего кода, полученная на i-м такте работы скрэмблера, Ai – двоичная цифра исходного
кода, поступающая на i-м такте на вход скрэмблера, Bi-3 и Bi-5 – двоичные цифры результирующего кода, полученные на
предыдущих тактах работы скрэмблера, соответственно на 3 и на 5 тактов ранее текущего такта, ⊕ – операция исключающего
ИЛИ (сложение по модулю 2).

Теперь давайте, определим закодированную последовательность, например, для такой исходной последовательности 110110000001.

Скрэмблер, определенный выше даст следующий результирующий код:

B1=А1=1 (первые три цифры результирующего кода будут совпадать с исходным, так как еще нет нужных предыдущих цифр)

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Таким образом, на выходе скрэмблера появится последовательность 110001101111. В которой нет последовательности из шести нулей, п
рисутствовавшей в исходном коде.

После получения результирующей последовательности приемник передает ее дескрэмблеру, который восстанавливает исходную
последовательность на основании обратного соотношения.

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Существуют другие различные алгоритмы скрэмблирования, они отличаются количеством слагаемых, дающих цифру
результирующего кода, и сдвигом между слагаемыми.

Главная проблема кодирования на основе скремблеров – синхронизация передающего (кодирующего) и принимающего
(декодирующего) устройств. При пропуске или ошибочном вставлении хотя бы одного бита вся передаваемая информация
необратимо теряется. Поэтому, в системах кодирования на основе скремблеров очень большое внимание уделяется методам синхронизации.

На практике для этих целей обычно применяется комбинация двух методов:

а) добавление в поток информации синхронизирующих битов, заранее известных приемной стороне, что позволяет ей при ненахождении
такого бита активно начать поиск синхронизации с отправителем,

б) использование высокоточных генераторов временных импульсов, что позволяет в моменты потери синхронизации производить
декодирование принимаемых битов информации “по памяти” без синхронизации.

Существуют и более простые методы борьбы с последовательностями единиц, также относимые к классу скрэмблирования.

Для улучшения кода ^ Bipolar AMI используются два метода, основанные на искусственном искажении последовательности нулей запрещенными символами.

В учебнике по работе с компьютером (317) предлагается вычислить минимальное расстояние между кодами для проверки ошибок с исправлением одной и обнаружением двух ошибок, чтобы достичь этого

Рис. 3 Коды B8ZS и HDB3

На этом рисунке показано использование метода ^ B8ZS (Bipolar with 8-Zeros Substitution) и метода HDB3 (High-Density Bipolar 3-Zeros) для корректировки
кода AMI. Исходный код состоит из двух длинных последовательностей нулей (8- в первом случае и 5 во втором).

Код B8ZS исправляет только последовательности, состоящие из 8 нулей. Для этого он после первых трех нулей вместо оставшихся пяти нулей вставляет пять
цифр: V-1*-0-V-1*. V здесь обозначает сигнал единицы, запрещенной для данного такта полярности, то есть сигнал, не изменяющий полярность предыдущей
единицы, 1* – сигнал единицы корректной полярности, а знак звездочки отмечает тот факт, что в исходном коде в этом такте была не единица, а ноль. В
результате на 8 тактах приемник наблюдает 2 искажения – очень маловероятно, что это случилось из-за шума на линии или других сбоев передачи. Поэтому
приемник считает такие нарушения кодировкой 8 последовательных нулей и после приема заменяет их на исходные 8 нулей.

Код B8ZS построен так, что его постоянная составляющая равна нулю при любых последовательностях двоичных цифр.

Код HDB3 исправляет любые 4 подряд идущих нуля в исходной последовательности. Правила формирования кода HDB3 более сложные, чем кода B8ZS. Каждые четыре нуля заменяются четырьмя сигналами, в которых имеется один сигнал V. Для подавления постоянной составляющей полярность сигнала
V чередуется при последовательных заменах.

Кроме того, для замены используются два образца четырехтактовых кодов. Если перед заменой исходный код содержал нечетное число единиц, то
используется последовательность 000V, а если число единиц было четным – последовательность 1*00V.

Таким образом, применение логическое кодирование совместно с потенциальным кодированием дает следующие преимущества:

Улучшенные потенциальные коды обладают достаточно узкой полосой пропускания для любых последовательностей единиц и нулей,
которые встречаются в передаваемых данных. В результате коды, полученные из потенциального путем логического кодирования,
обладают более узким спектром, чем манчестерский, даже при повышенной тактовой частоте.

Линейные блочные коды

При передаче информации по каналам связи возможны ошибки вследствие помех и искажений сигналов. Для обнаружения и
исправления возникающих ошибок используются помехоустойчивые коды. Упрощенная схема системы передачи информации
при помехоустойчивом кодировании показана на рис

Кодер служит для преобразования поступающей от источника сообщений последовательности из k информационных
символов в последовательность из n cимволов кодовых комбинаций (или кодовых слов). Совокупность кодовых слов образует код.

Множество символов, из которых составляется кодовое слово, называется алфавитом кода, а число различных символов в
алфавите – основанием кода. В дальнейшем вследствие их простоты и наибольшего распространения рассматриваются главным
образом двоичные коды, алфавит которых содержит два символа: 0 и 1.

Рис. 4 Система передачи дискретных сообщений

Правило, по которому информационной последовательности сопоставляется кодовое слово, называется правилом кодирования. Если при кодировании каждый раз формируется блок А из k информационных символов, превращаемый затем в n-символьную
кодовую комбинацию S, то код называется блочным. При другом способе кодирования информационная последовательность на
блоки не разбивается, и код называется непрерывным.

С математической точки зрения кодер осуществляет отображение множества из 2k элементов (двоичных информационных
последовательностей) в множество, состоящее из 2n элементов (двоичных последовательностей длины n). Для практики
интересны такие отображения, в результате которых получаются коды, обладающие способностью исправлять часть ошибок
и допускающие простую техническую реализацию кодирующих и декодирующих устройств.

Дискретный канал связи – это совокупность технических средств вместе со средой распространения радиосигналов, включенных
между кодером и декодером для передачи сигналов, принимающих конечное число разных видов. Для описания реальных каналов
предложено много математических моделей, с разной степенью детализации отражающих реальные процессы. Ограничимся рассмотрением
простейшей модели двоичного канала, входные и выходные сигналы которого могут принимать значения 0 и 1.

Наиболее распространено предположение о действии в канале аддитивной помехи. Пусть S=(s1,s2,. ,sn)
и Y=(y1,y2,. ,yn) соответственно входная и выходная последовательности двоичных символов. Помехой или вектором ошибки называется последовательность из n символов E=(e1,e2,. ,en), которую
надо поразрядно сложить с переданной последовательностью, чтобы получить принятую:

Таким образом, компонента вектора ошибки ei=0 указывает на то, что 2-й символ принят правильно (yi=si),
а компонента ei=1 указывает на ошибку при приеме (yi≠si). Поэтому важной характеристикой вектора ошибки
является число q ненулевых компонентов, которое называется весом или кратностью ошибки. Кратность ошибки – дискретная случайная величина,
принимающая целочисленные значения от 0 до n.

Для симметричного стационарного канала распределение вероятностей векторов ошибки кратности q является биноминальным:

которая показывает, что при P<0,5 вероятность β2=αj является убывающей функцией q,
т. в симметричном стационарном канале более вероятны ошибки меньшей кратности. Этот важный факт используется при построении
помехоустойчивых кодов, т. позволяет обосновать тактику обнаружения и исправления в первую очередь ошибок малой кратности. Конечно, для других моделей канала такая тактика может и не быть оптимальной.

Декодирующее устройство (декодер) предназначено оценить по принятой последовательности Y=(y1,y2,. ,yn)
значения информационных символов A’=(a’1,a’2,. ,a’k,). Из-за действия помех возможны неправильные решения. Процедура декодирования включает решение двух задач: оценивание переданного кодового
слова и формирование оценок информационных символов.

Вторая задача решается относительно просто. При наиболее часто используемых систематических кодах, кодовые слова которых содержат информационные
символы на известных позициях, все сводится к простому их стробированию. Очевидно также, что расположение информационных символов внутри кодового
слова не имеет существенного значения. Удобно считать, что они занимают первые k позиций кодового слова.

Наибольшую трудность представляет первая задача декодирования. При равновероятных информационных последовательностях ее оптимальное решение
дает метод максимального правдоподобия. Функция правдоподобия как вероятность получения данного вектора Y при передаче кодовых слов
Si, i=1,2,. ,2k на основании Y=S+E определяется вероятностями появления векторов ошибок:

где qi – вес вектора Ei=Y+Si

Очевидно, вероятность P(Y/Si) максимальна при минимальном qi. На основании принципа максимального правдоподобия оценкой S’ является кодовое слово,
искажение которого для превращения его в принятое слово Y имеет минимальный вес, т. в симметричном канале является наиболее вероятным (НВ):

Если несколько векторов ошибок Ei имеют равные минимальные веса, то наивероятнейшая ошибка EHB определяется случайным выбором среди них.

В качестве расстояния между двумя кодовыми комбинациями принимают так называемое расстояние Хэмминга, которое численно равно количеству символов, в которых одна
комбинация отлична от другой, т. весу (числу ненулевых компонентов) разностного вектора. Расстояние Хэмминга между принятой последовательностью Y и всеми
возможными кодовыми словами 5, есть функция весов векторов ошибок Ei:

Поэтому декодирование по минимуму расстояния, когда в качестве оценки берется слово, ближайшее к принятой
последовательности, является декодированием по максимуму правдоподобия.

Таким образом, оптимальная процедура декодирования для симметричного канала может быть описана следующей последовательностью операций. По принятому
вектору Y определяется вектор ошибки с минимальным весом EHB, который затем вычитается (в двоичном канале – складывается по модулю 2) из Y:

Наиболее трудоемкой операцией в этой схеме является определение наи-вероятнейшего вектора ошибки, сложность которой
существенно возрастает при увеличении длины кодовых комбинаций. Правила кодирования, которые нацелены на упрощение
процедур декодирования, предполагают придание всем кодовым словам технически легко проверяемых признаков.

Широко распространены линейные коды, называемые так потому, что их кодовые слова образуют линейное
подпространство над конечным полем. Для двоичных кодов естественно использовать поле характеристики p=2. Принадлежность принятой комбинации Y известному подпространству является тем признаком, по которому
выносится решение об отсутствии ошибок (EHB=0).

Так как по данному коду все пространство последовательностей длины n разбивается на смежные классы,
то для каждого смежного класса можно заранее определить вектор ошибки минимального веса,
называемый лидером смежного класса. Тогда задача декодера состоит в определении номера смежного класса,
которому принадлежит Y, и формировании лидера этого класса.

Рекомендации по выполнению задания

  • Для реализации операций умножения и деления ненулевых элементов в поле удобно пользоваться представлением элементов поля как степеней некоторого примитивного элемента : . Тогда произведение двух элементов поля и равно . Аналогично частное этих двух элементов равно . Для быстрого перехода от десятичного представления элементов поля к степенному и обратно удобно завести таблицу размера . В первой колонке этой таблицы в позиции будет находится число , а во второй колонке в позиции — значение .
  • При реализации алгоритмов задания рекомендуется, помимо прочего, использовать следующие проверки на корректность:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *